h(2)=16(2)^2+48(2)+4

Simple and best practice solution for h(2)=16(2)^2+48(2)+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for h(2)=16(2)^2+48(2)+4 equation:



h(2)=16(2)^2+48(2)+4
We move all terms to the left:
h(2)-(16(2)^2+48(2)+4)=0
We add all the numbers together, and all the variables
h^2-26730=0
a = 1; b = 0; c = -26730;
Δ = b2-4ac
Δ = 02-4·1·(-26730)
Δ = 106920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{106920}=\sqrt{324*330}=\sqrt{324}*\sqrt{330}=18\sqrt{330}$
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{330}}{2*1}=\frac{0-18\sqrt{330}}{2} =-\frac{18\sqrt{330}}{2} =-9\sqrt{330} $
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{330}}{2*1}=\frac{0+18\sqrt{330}}{2} =\frac{18\sqrt{330}}{2} =9\sqrt{330} $

See similar equations:

| -117-4x=83+6x | | 180=40+x+x | | 36+x=63 | | 16w=35 | | -x/7-3=-2 | | 180=142+68+x | | u/4−2=3 | | {x}{7}+4=12 | | 20=2h+8 | | x=180-(142+68) | | 2x+9=-5+2 | | n/0.36=5.89 | | 8=m9.8 | | 2(2x+20)=40.4 | | 5=v/2-5 | | r=12/A=πr2 | | 2x+4x-8-3x+10-15x+40+25x-27=16x+12 | | (x-2)²=8 | | 500=100x | | 14=x+20 | | 3y-1+40+60=180 | | 10=z÷2 | | 320=40x | | 3y-1+60=180 | | 4n−1=2 | | 5x+5+3x+17+70=180 | | 3y-1+40+70=180 | | 4p+4(1175+4p)=1700 | | 28.5+x=37.8+x | | 16p=35 | | 3u+11=53 | | 6×y=-5 |

Equations solver categories